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ABSTRACT

Description of purpose: The NA-MIC SPHARM-PDM Toolbox represents an automated set of tools for the
computation of 3D structural statistical shape analysis. SPHARM-PDM solves the correspondence problem by
defining a first order ellipsoid aligned, uniform spherical parameterization for each object with correspondence es-
tablished at equivalently parameterized points. However, SPHARM correspondence has shown to be inadequate
for some biological shapes that are not well described by a uniform spherical parameterization. Entropy-based
particle systems compute correspondence by representing surfaces as discrete point sets that does not rely in any
inherent parameterization. However, they are sensitive to initialization and have little ability to recover from
initial errors. By combining both methodologies we compute reliable correspondences in topologically challeng-
ing biological shapes. Data: Diverse subcortical structures cohorts were used, obtained from MR 3T images.
Method(s): The SPHARM-PDM shape analysis toolbox was used to compute point based correspondent models
that were then used as initializing particles for the entropy-based particle systems. The combined framework
was implemented as a stand-alone Slicer3 module, which works as an end-to-end shape analysis module. Results:
The combined SPHARM-PDM-Particle framework has demonstrated to improve correspondence in the example
dataset over the conventional SPHARM-PDM toolbox. Conclusions: The work presented in this paper demon-
strates a two-sided improvement for the scientific community, being able to 1) find good correspondences among
spherically topological shapes, that can be used in many morphometry studies 2) offer an end-to-end solution
that will facilitate the access to shape analysis framework to users without computer expertise.
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1. INTRODUCTION

Making a qualitative assessment of an anatomical structure is a trivial task for an experienced clinician but
this qualitative expert knowledge is difficult to quantify, making it difficult or impossible to formulate accurate
scientific conclusions and general-purpose theories of shape for applications in medicine. That is why shape
analysis is a field that has become of increasing interest to the clinical research community due to its potential to
precisely locate morphological changes between healthy and pathological structures, both cross-sectionally and
longitudinally.

In order to accurately assess structural changes at specific locations, shape populations need to be represented
by sampling each shape surface in a consistently ordered fashion so as to define homologous surface points across
the each sample in the population. Needless to say, definition of correspondence among samples will influence
directly the subsequent analysis. This manuscript presents a set of tools that compute shape correspondence by
using a combined methodology: SPHARM1 and entropy-based particle systems.2
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- SPHARM-PDM toolbox presents an automated set of tools for the computation of shape analysis based
in SPherical HArmonic Representation. SPHARM-PDM solves the correspondence problem by defining
a spherical parameterization for each one of the objects in a shape population, assuming correspondence
between equivalently parameterized points. However, biologically inspired shapes sometimes have not a
clear parametric definition and in those cases the correspondence achieved by SPHARM is not optimal.

- Entropy-based particle systems2 compute correspondence by representing surfaces as discrete point sets
that does not rely in any inherent parameterization. This method uses methodology from the computer
graphics field representing surfaces as dynamic set of particles across an ensemble of surfaces so that their
positions optimize the information content of the system. However, they are sensitive to initialization and
have little ability to recover from initial errors.

In this work, we combine the potential of SPHARM to compute a reliable set of correspondent points based
in spherical parameterization and the potential of entropy-based particle systems to optimize correspondences in
a shape population, regardless of any inherent parameterization. By combining both methodologies we compute
reliable correspondences in topologically challenged biological shapes. Also, this work presents a input to end
computing shape correspondence computing module included in 3DSlicer.3 This software was developed at
the Surgical Planning Laboratory (SPL, Brigham and Womens Hospital, Boston, MA, USA) and is an free
open-source software application available on the internet.This comprehensive program intends to bridge the
gaps between the experimental science made by computer scientists and the clinical research science, making it
available to a bigger audience that does not need to have a deep computer knowledge to operate the tool.

2. DATA

Images were acquired on a Siemens head-only 3T scanner (Allegra, Siemens Medical System, Erlangen, Germany).
Infants were scanned unsedated while asleep, fitted with ear protection and had their heads secured in a vacuum-
fixation device at both 1 and 2 year follow up sessions. T1-weighted structural pulse sequences were a 3D
magnetization prepared rapid gradient echo (MP-RAGE TR = 1820 msec, inversion time = 400 msec, echo time
= 4.38 msec, flip angle = 7 degrees, n = 57). Proton density and T2-weighted images were obtained with a turbo
spin echo sequence (TSE, TR = 6200 msec, TE1 = 20 msec, TE2 = 119 msec, flip angle 150 degrees). Spatial
resolution was 1 X 1 X 1 mm voxel for T1-weighted images, 1.25 X 1.25 X 1.5 mm voxel with .5 mm interslice
gap for proton density/T2-weight images. Due to the presence of unmyelinated white matter, it is necessary to
perform the neonatal segmentations on T2-weighted scans to accurately segment the white matter, grey matter
interface. Segmentations in 1 and 2yo are performed in T1-weighted scans. The validation dataset for our 3D
Slicer SPHARM+Particle system shape correspondence pipeline consists in 20 segmented left hippocampus (H),
20 segmented left caudates (C) and 20 segmented left lateral ventricles (LV) (see figure 1).

3. METHODS

This section describes the SPHARM-PDM shape represenation and the entropy-based particle systems. In sum-
mary, the input of the proposed shape analysis is a set of binary segmentations of a single type of subcortical
structures. These segmentations are first processed to fill any interior holes and a minimal smoothing operation.
The processed binary segmentations are converted to surface meshes, and a spherical parametrization is com-
puted for the surface meshes using a area-preserving, distortion minimizing spherical mapping. The SPHARM
description is computed from the mesh and its spherical parametrization. The SPHARM description is then
sampled into a triangulated surfaces (SPHARM-PDM) via icosahedron subdivision of the spherical parametriza-
tion. These SPHARM-PDM surfaces are all spatially aligned using rigid Procrustes alignment. SPHARM-PDM
rigidly aligned surface meshes are converted to particle locations and particle files are created. These will be
used as initialization as an input for entropy-based particle systems, that find correspondence by simultaneously
maximizing both the geometric accuracy and the statistical simplicity of the model. The results obtained for
three different types of subcortical structures (C, H and LV see Section 2) will be evaluated for SPHARM-only
and SPHARM-Particles frameworks using generalization and specificity error metrics for model construction.



a)

Figure 1. Pediatric subcortical structures segmented in 2yo scan. a) 3D rendering of C (in red), H (in yellow) and LV (in
blue) displayed in axial-sagittal-coronal cross-sections of the brain for anatomical reference. b) Axial (top-left), sagittal
(top-right) and coronal (bottom-left) cross-sections of the bran with C, H and LV slice intersections visible.

3.1 SPHARM-PDM

In summary, the SPHARM description is a hierarchical, global, multi-scale boundary description that can repre-
sent objects of spherical topology, proposed initially by.4 This SPHARM shape analysis approach was extended
by5,6 to use the implied sampled surface (SPHARM- PDM, where PDM stands for Point Distribution Models).
This shape analysis framework is based in spherical parameterization, that is computed via optimizing an equal
area mapping of the 3D voxel mesh onto the sphere and minimizing angular distortions. The basis functions of
the parameterized surface are spherical harmonics. Each individual SPHARM description is composed of a set of
coefficients, weighting the basis functions. Kelemen et al.7 demonstrated that SPHARM can be used to express
shape deformations. Truncating the spherical harmonic series at different degrees results in object representations
at different levels of detail. SPHARM is a smooth, accurate fine-scale shape representation, given a sufficiently
high representation level. Based on a uniform icosahedron-subdivision of the spherical parameterization, we
obtain a Point Distribution Model (PDM). Even though SPHARM-PDM shape correspondence framework has
been applied in several studies on brain morphometry8 and dentistry9,10 successfully, if the biologically inspired
shape has not a clear parametric definition the correspondence achieved by SPHARM might not be optimal.
The correspondent PDMs will be used as initialization for the entropy-based particle systems (see figure 2), first
developed by Cates et al.2

Figure 2. a) SPHARM representation of a neonatal LV, color coded using the spherical parameterization b) Particle set
computed using the SPHARM representation triangulated mesh as initialization.



3.2 Entropy-based Particle Systems

This method constructs a point-based model of the samples that simultaneously maximizes both the geometric
accuracy and the statistical simplicity of the model, by minimizing the ensemble entropy (how different are one
shapes from the rest in the population) and the shape entropy (how well sampled is that individual model).

The method has been extended by,11 including features related to geometry and functional information,
in addition to just pure 3D information, into the optimization process. The main idea for the entropy based
correspondence method is to construct a point-based sampling of the shape ensemble that simultaneously max-
imizes both the geometric accuracy and the statistical simplicity of the model. The inputs to the module are
the SPHARM-PDM surfaces from which surface point samples, which also define the shape-to-shape correspon-
dences, are modeled as sets of dynamic particles that are constrained to lie on a set of implicit surfaces. Sample
positions are optimized by gradient descent on an energy function that balances the negative entropy of the
distribution on each shape with the positive entropy of the ensemble of shapes. The outputs of the shape cor-
respondence module are correspondent triangulated meshes and their equivalent set of 3D points, which can be
used for shape morphometry statistics.

3.3 Validation metrics

In order to validate our SPHARM-Particles combined methodology we computed benchmark results for the three
datasets used in the comparisons. Ideally, any model M computed using any shape correspondence framework
should be:

- Able to represent any instance of the class.

- Only capable of representing legal instances of the class.

These two features are represented by model generalization and model specificity, respectively. The general-
ization ability of a model G(M) measures its capability to represent unseen instances of the object class. This
is a fundamental property as it allows a model to learn the characteristics of an object class from a limited
training set. If a model is overfitted to the training set, it will be unable to generalize to unseen examples. The
generalization ability of each model is measured using leave-one-out reconstruction. A model is built using all but
one member of the training set and then fitted to the excluded example. The accuracy to which the model can
describe the unseen example is measured. G(M) is measured as a function of the number of shape parameters M
used in the reconstruction. Its standard error σG(M) is derived from the sampling standard deviation σ and the
training set size ns as: σG(M) = σ√

ns−1 .On the other hand, the quantitative measure of specificity of a model

S(M) makes reference to the fact a model should only generate instances of the object class that are similar to
those in the training set. It is useful to assess this qualitatively by generating a population of instances using
the model and comparing them to the members of the training set. S(M) is defined as the average distance
of uniformly distributed, randomly generated objects in the model shape space to their nearest member in the
training set. The standard error of S(M) is given by: σS(M) = σ

numberofrandomsamples (N was chosen 10.000 in

our experiments).

4. TECHNOLOGY DISSEMINATION

The combined methodology (see figure 3) was implemented as a stand-alone 3DSlicer module, which works as
an input to end shape correspondence module (figure 3 a)). This is a open-source free software, available in
NITRC (Neuroimaging Informatics Tools and Resources Clearinghouse.12 In figure 3 b) is possible to see a daily
downloads plot of the SPHARM-PDM Toolbox in NITRC, which shows the potential interest of the scientific
community in shape correspondence. We expect to increase the download numbers after the addition off the
new combined SPHARM-Particles combined methodology.



Figure 3. a) Proposed combined methodology overview b) Daily downloads of the SPHARM-PDM toolbox in NITRC.

5. RESULTS

In the following sections we present the results of the application of the proposed SPHARM-Particles corre-
spondence framework compared with SPHARM-only corresponcence methodology. Three different subcortical
structure populations will be used: a left pediatric caudate population, a left pediatric hippocampus population
and a left lateral ventricle population of each 20 subjects. In this document, we focus only on the accuracy of
model building and correspondence, not in the application of these models to respond clinical questions. For
all three datasets, the segmentation used as input were performed using AutoSeg,13 that is a tool allowing the
segmentation of probabilistic sub-cortical structures and label maps, such as generic ROI maps and parcellation
maps. The approach is a fully automatic segmentation via a deformable registration of an unbiased diffeomor-
phic atlas with probabilistic spatial priors. Postprocessing with 3D connectivity, morphological closing and minor
manual editing provided simply connected 3D objects.

In Figure 4 errors graphs of generalization (G(M), a), c), and e)) and specificity (S(M), b), d) and f)) are
shown for caudate, hippocampus and ventricle studies. In all datasets both G(M) and S(M) presented lower
error values in the combined SPHARM+Particles proposed methodology, demonstrating that this framework
computes correspondence that best represent the sample populations. The lateral ventricle dataset has higher
error values, probably due to its complicated geometry.

6. CONCLUSIONS

In this paper, we have presented a SPHARM-PDM and particle-based entropy system methodology compared
with SPHARM-PDM toolbox in three populations of pediatric subcortical structures. We have analyzed both
frameworks by analyzing properties of the model implied by the correspondences, in regard to generalization
and specificity. Our combined method has demonstrated to improve correspondence in the different example
datasets, while SPHARM-PDM toolbox only was not finding good correspondences.

The proposed framework is disseminated in easy, streamlined 3DSlicer modules, trying to bridge the gap
existing between basic and applied science: basic biomedical research science has the trend to evolve thanks to
promotions and grants based largely on the papers scientists have published in top journals, not on how much
they have advanced medicine. On the other hand, many clinicians who treat patients in the faculty practice
clinics have little time or inclination to keep up with an increasingly complex basic literature. 3DSlicer is a big
initiative for translational research solutions, developed under the auspices of the National Alliance for Medical
Image Computing NAMIC, that is a multi-institutional, interdisciplinary community of researchers. NAMIC also
shares the recognition that modern healthcare demands improved technologies based in imaging to ease suffering
and prolong productive life and improve current clinical practices. Therefore using 3D Slicer as dissemination
technology seemed the most suitable approach.

In conclusion, the work presented in this paper demonstrates a two-sided improvement for the scientific
community, being able to 1) find good correspondences among any population of shapes, that can be used in



a)

c)

e) f)

d)

b)

Figure 4. Table with errors graphs of generalization (G(M)) and specificity (S(M)) for caudate (a) and b)), hippocampus
(c) and d)) and lateral ventricle (e) and f)). To avoid redundance, only left structures were used. SPHARM-only
methodology shows clearly worse results than the SPHARM-Particle combined methodology for all studied datasets.



many morphometry studies 2) offer a input to end solution that will facilitate the access to complicated computer
processing methodologies to all clinical users without needing too much computer expertise or knowledge of the
underlying basic science.
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